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Abstract— Generating varied scenarios through simulation
is crucial for training and evaluating safety-critical systems,
such as autonomous vehicles. Yet, the task of modeling the
trajectories of other vehicles to simulate diverse and mean-
ingful close interactions remains prohibitively costly. Adopting
language descriptions to generate driving behaviors emerges as
a promising strategy, offering a scalable and intuitive method
for human operators to simulate a wide range of driving
interactions. However, the scarcity of large-scale annotated
language-trajectory data makes this approach challenging. To
address this gap, we propose Text-to-Drive (T2D) to synthesize
diverse driving behaviors via Large Language Models (LLMs).
We introduce a knowledge-driven approach that operates in two
stages. In the first stage, we employ the embedded knowledge
of LLMs to generate diverse language descriptions of driving
behaviors for a scene. Then, we leverage LLM’s reasoning
capabilities to synthesize these behaviors in simulation. At
its core, T2D employs an LLM to construct a state chart
that maps low-level states to high-level abstractions. This
strategy aids in downstream tasks such as summarizing low-
level observations, assessing policy alignment with behavior
description, and shaping the auxiliary reward, all without need-
ing human supervision. With our knowledge-driven approach,
we demonstrate that T2D generates more diverse trajectories
compared to other baselines and offers a natural language
interface that allows for interactive incorporation of human
preference. Please check our website for more examples: here

I. INTRODUCTION

Simulators have emerged as an effective tool for training
and evaluating safety-critical systems, such as autonomous
vehicles. They provide opportunities to synthesize novel data
for training, expose methods to edge cases that are otherwise
not available in public driving datasets, and offer a cost-
effective method of simulating close interactions that are oth-
erwise costly or impractical to capture in real-world settings.
Their utility extends further to in-simulation validations and
enables detailed studies that are difficult to observe directly.

Despite their advantages, current simulators face signifi-
cant challenges in controlling the behaviors of surrounding
vehicles and scaling these interactions. Adding varied driving
behaviors to the simulation can facilitate comprehensive test-
ing across diverse driving behavior profiles. This addresses
the inherent bias found in driving datasets, used by data-
driven simulators, which tend to be limited in scope and
curated from a narrow selection of geographic areas.

One promising direction to overcome these limitations is
by extending the capabilities of foundational models into
simulators. A knowledge-driven approach that utilizes the
embedded knowledge of Large Language Models (LLMs)
to curate comprehensive and diverse driving scenarios, elim-
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Fig. 1: Given a scene description, T2D leverages Large
Language Models to generate diverse descriptions of driving
behaviors and then synthesizes them in simulation.

inates the need for exhaustive manual scripting of poten-
tial interactions. Furthermore, utilizing natural language to
control the generation of these scenarios presents an intu-
itive method to specify desired behavior trajectories. This
technique allows for generating driving scenarios based on
language descriptions, making it easier for human operators
to curate meaningful test cases. A notable application of this
strategy involves connecting to textual data, such as accident
reports, to ground simulations in real-world contexts. Our
work adopts this knowledge-driven approach, drawing on
rich knowledge sources to generate diverse driving scenarios.
This method can be complementary to data-driven simula-
tors, which rely only on human-driving data.

In this paper, our research aims to answer the question:
How can we translate a diverse set of language descriptions
of driving behaviors into a corresponding set of behaviorally
diverse policies for simulation? To address this, we introduce
T2D, a knowledge-driven method for simulation that utilizes
LLMs to generate diverse language descriptions of driving
behaviors and then synthesizes them in simulation. Given

https://text-to-drive.github.io/


Fig. 2: Overview. Left: First, an LLM generates diverse descriptions of driving behaviors, which can incorporate human
preferences through a natural language interface. Middle: Next, an LLM generates a low-level state translator (LLST),
primary function, and auxiliary function from a description of a driving behavior. The LLST translates low-level states to
abstract states (see example in bottom middle block) and then records their state visit history (see example in bottom right
block). The primary function gives a reward only when the vehicle exhibits the target behavior, using a finite-state machine
for formal verification of behavior emergence (see example in bottom left block). The auxiliary function provides rewards for
reaching intermediate states and can be iteratively updated. Right: Finally, we employ a standard multi-agent RL framework
to train a driving policy using the primary and auxiliary functions as guidance.

a behavior description, T2D generates a mapping of low-
level states (e.g: vehicle position, heading, speed) to high-
level abstractions (e.g. “on the on-ramp”, “near the end
of on-ramp”, and “merged”). By leveraging this abstract
state representation, transitions are defined to capture the
temporal dynamics of the behavior, effectively embodying
temporal logic. Such a framework not only enhances the
capacity for reasoning about behavioral alignment but also
creates abstract summaries of low-level observations. The
ability to assess the behavioral alignment is used as a
primary reward function to guide the driving policy, while
our auxiliary function is used to improve exploration effi-
ciency. The abstract summaries inform the LLM whether
and how to adjust the auxiliary function after training. This
iterative process introduces new incentives for exploring
new states and penalties for unwanted behaviors, thereby
aligning the policy more closely with the desired behavior.
We demonstrate that T2D maintains the behavioral context
across natural language, code, and driving policy, enabling
accurate simulation of the driving behavior. Additionally,
T2D surpasses baselines in generating diverse trajectories
and offers a natural language interface to embed human
preferences into the driving trajectories. Using T2D, we
generated 18 driving behaviors from language descriptions.
To this end, we make the following key contributions:

• We introduce T2D, a knowledge-driven method for
simulation that enables (i) text-to-driving behavior syn-
thesis, and (ii) diverse driving behavior generation.

• Our method facilitates the use of LLM-based reasoning
by encapsulating the logic in state machines. This
facilitates complex policy training processes such as:
(i) summarizing low-level observations, (ii) reasoning
about behavioral alignment, and (iii) iteratively updating
the auxiliary function, without any human supervision.

• We demonstrate our method effectively retains the
behavioral context across natural language, code, and
driving policy, enabling it to simulate a driving behavior
from a description. Additionally, T2D not only gen-
erates more diverse trajectories compared to baselines
but also offers a language interface to integrate human
preferences into driving simulations.

II. RELATED WORK

A. Driving Simulators

Collecting data for specific scenarios proves challeng-
ing, emphasizing the need to test safety-critical systems
in controlled environments. This necessity has spurred the
development of model-based simulators [8], capable of
modeling real-world physics and constructing photorealis-
tic environments. Continual improvements by the CARLA



open-source development community have integrated tools
like Scenic [13], enabling the creation of complex traffic
scenarios using compact English-like syntax. However, an
issue with early simulators such as CARLA is the sim-to-real
domain gap. In contrast, data-driven simulators like VISTA
[1] and LIDARSim [19] have shown potential in bridging
this gap by leveraging real-world driving data [4], [26] to
reconstruct real-world scenes and synthesize novel views.
These simulators, however, lack the generative control that
model-based simulators offer. Our work addresses this issue
by extending the generative capabilities of foundation models
into simulators, specifically those that are equipped with a
reinforcement learning (RL) interface [14], [16].

B. Behavior Generation

Diverse Skills. Unsupervised skill acquisition algorithms
such as DIAYN [10] and DADS [24] have demonstrated
their ability to learn diverse skills in unsupervised settings.
These have further inspired methods aimed at enhancing
trajectory diversity in RL [17] and simulating diverse traffic
behaviors [25]. However, despite their ability to generate
diverse actions, their methods cannot be directed through
textual guidance or incorporate human preference.

Controllable Traffic Generation. Recent advancements
in data-driven traffic generation methods have employed neu-
ral networks to synthesize new scenarios [2], [27], [22], [11],
[29], [30]. These approaches offer a promising avenue for
the realistic modeling of traffic environments. Other works
have focused on learning latent representations of scenarios
for querying, editing, and composing driving behaviors from
driving datasets [7]. Reinforcement learning with human
feedback has also been explored to incorporate human pref-
erence to generated scenarios [5]. Despite their ability to
create novel scenes, these methods cannot take language
descriptions of driving behaviors as inputs. Additionally,
generative approaches using diffusion models have also been
studied [6], [31] as a suitable interactive traffic simulation of
safety-critical scenarios. The necessity of manual labeling for
driving behaviors in recent research [7] further highlights this
limitation. Our knowledge-driven approach aims to overcome
this issue by enabling the generation of diverse driving
behaviors from rich knowledge sources.

More recently, language-conditioned traffic generation has
been explored in [28], [31], [23]. [28] leverages LLMs to
translate textual descriptions of traffic scenes directly into
driving trajectories. However, while their approaches focuses
on low-level trajectory generation, ours explores the genera-
tion of diverse high-level behaviors such as “tailgating” and
“lane weaving”. In this work, we build upon the capabilities
of LLMs for zero-shot generation of reward functions [18].
Our research explores this capability further and extends
it to diverse driving behaviors for simulation, especially in
scenarios lacking a ground-truth fitness function.

III. METHOD

The goal of our method is to generate diverse driving
behaviors from textual inputs through a knowledge-driven

approach, structured into two main stages. In the first stage,
we utilize the vast knowledge embedded in LLMs to generate
language descriptions of diverse driving behaviors (Sec. III-
A). In the second stage, as we transition from these descrip-
tions to driving policies, three key steps are undertaken. First,
we used an LLM to generate a low-level state translator
(Sec. III-C). We detail how this is used to translate low-
level trajectories to an abstract code representation. Then, to
evaluate the alignment of driving policies with desired behav-
iors, we introduce the primary reward function (Sec. III-D),
which, together with our auxiliary function, provides reward
guidance to the driving policy (Sec. III-E). Subsequently, we
detail an iterative approach that employs LLMs to adjust the
auxiliary function after each training. Finally, we employ a
multi-agent RL framework to train a driving policy (Sec. III-
G). An overview of our method is shown in Figure 2.

A. Generating Behavior Descriptions

In our knowledge-driven approach, we use gpt-4’s zero-
shot generation capability to generate descriptions of di-
verse driving behaviors, L ∼ πL(.|scene) from a concise
description of a scene. For each scene type – intersections,
merges, highways – we generated 50 descriptions of driving
behaviors. We then selected a smaller, representative subset
of six behaviors per scene for simulation to provide a detailed
analysis of all generated behaviors.

B. Retrieval from Environment

We enhance our code generation model, πC , with re-
trieval augmented generation (RAG) to provide sufficient
context about the simulation environment. This involves
segmenting the source code using an abstract syntax tree
(AST), embedding the code using a text embedding model
(text-embedding-ada-002), and storing the embed-
dings in a database. To preserve the dependencies between
the code segments, we use ctags to generate a repository map.
We used LangChain to implement our RAG framework.

During the retrieval process, we use the behavior descrip-
tion L to query the embedding database and retrieve relevant
code segments. We use this code and a repository map as
context for πC . By making the source code accessible, we
enrich the code generation model with APIs about the low-
level state. For instance, in addressing the behavior “accel-
erative merging on-ramp”, the model can utilize the attribute
car.speed and access functions car.on ramp(). This
retrieval ensures that the low-level observations of the driving
policy are available in the code space.

C. Low-Level State Translator (LLST)

Given a behavior description L, our code generation model
πC , generates a low-level state translator, M ∼ πC(.|L).
The state translator M, has three primary responsibilities:
it (1) decomposes the behavior, (2) maps lower-level states
to abstract states, and (3) records abstract state visits. First,
M decomposes the behavior into abstract states, Q. Each
abstract state, q ∈ Q, captures an essential aspect of the
driving behavior. For example, in the case of “merging late



Fig. 3: Left: The auxiliary iterator LLM analyzes the policy after training to decide whether and how to adjust the auxiliary
function based on the history of abstract state visits. Right: The right figure illustrates the LLM’s reasoning process, where
it reads a high-level behavior sequence, analyzes it, and then provides an accurate summary of the low-level trajectories.

on the on-ramp”, q could be any of “on the on-ramp,”
“merging,” and “near the end of the on-ramp” as illustrated in
Figure 2. This decomposition yields four advantages: firstly,
it discretizes the behavior into critical phases to capture
different aspects of the behavior; secondly, it constrains Q
to be relevant to the target behavior; thirdly, by merging the
initial advantages, it imparts clear, objective guidance which
makes the generation of M more consistent and reliable; and
lastly, it allows the state name to be in the language domain.

Moreover, M is constructed by the LLM as a state
chart. We define M as a tuple M = (Q, T , E, U,G),
where T is the set of transitions triggered by an event
E, conditioned on a guard in G, and results in an update
action from U . The events in E represent low-level changes
within the driving environment, such as speed, position,
and heading. The guards in G are boolean functions that
return true under certain conditions in the low-level state. We
exploit the code-generating capabilities of LLMs to achieve
semantic alignment between guard conditions and abstract
state names. This step leverages the code-generation model,
πC , with our RAG framework. Specifically, we used the
gpt-4-1106-preview variant [21] and set the temper-
ature to 0.2. This decision aims for a more deterministic
output due to the objective nature of the task.

The translator’s update action from U , results in an update
in the state history dictionary HQ, that keeps a historical
record of all abstract state visits. With each timestep, it
appends a boolean value indicating whether a state has been
visited. The state history dictionary HQ over a rollout of T
timesteps can be represented as HQ : Q → {true, false}T .
Then HQ(q) = Hq , is the visit history associated with
q. This enables both the ability to identify current state
occupancy and track state visits and transitions. These
characteristics are extremely effective at summarizing low-
level observations of the driving policy back to the code
and language space (see Figure 3) which we utilized in the
primary function (Sec. III-D) and iterator (Sec. III-F).

D. Primary Reward Function

In this section, we introduce the primary function RP,
generated by an LLM, which takes HQ as input and returns
a reward, RP : HQ → {0, 5}. This function serves two
purposes: first, it assesses the behavioral alignment of the
driving policy πP with the target behavior L; second, it
awards a large reward when the vehicle demonstrates the
target behavior. To generate RP ∼ πC(.|(Q,L)), we combine
the abstract state names Q, and behavior description L,
as inputs to πC . The LLM constructs RP as a finite-state
machine (FSM) that models the target behavior L. This FSM
can be described as a tuple, RP = (Q,Σ, δ, q0, F ); where
Σ = {q|q ∈ Q} is the input alphabet, δ : Q × Σ → Q is
the transition function, q0 is the initial state, and F is the
accepting states, indicating the target behavior is achieved.

The abstract state of RP utilizes Q from the state trans-
lator, M. We regard each q ∈ Q from M as a code
abstraction representing a behavior snapshot. For instance,
the state “end of on-ramp” is an abstraction for the condi-
tions 0 < car.headway() < 30 and car.on ramp().
The behavioral transition function δ, then adds transitions
between abstract states to capture the temporal dynamics of
the target behavior. This is particularly useful for driving
behaviors such as “late merging”, which requires visiting
“end of on-ramp” before transitioning to the “merge” state.
The formal structure of the FSM, generated by the LLM,
provides a framework for verifying the abstract behavior
sequences given by HQ. This strategy encapsulates the
LLM’s reasoning into a compact FSM that can be accessed
after LLM inference. This structured format enables an
offline application that utilizes LLM’s reasoning to assess
behavioral alignment during the training of the driving
policy. For a visual illustration of the FSM, refer to Figure 2.
In our implementation, we set the environment minimum
speed to 0 so that the vehicle could not reverse to avoid
complex generation of RP.

We then use the FSM to give a reward of 5 to the vehicle



upon reaching the accepted states, F . This reason will be
evident in the next section (Sec. III-E). An important nuance
of our method is its bi-functional relationship between the
state translator and the primary function. The state translator
abstracts low-level observations of the driving policy into the
code domain, while RP evaluates these abstractions in the
code domain and gives a reward to guide the driving pol-
icy πP . This reciprocal relationship encourages behavioral
consistency across different spaces.

E. Auxiliary Reward Function

Although the primary function RP, is used to guide the
driving policy πP , the rewards from RP are too sparse. To
improve exploration efficiency, we use an auxiliary function,
Raux : S,A,HQ → [−1, 1], that takes low-level state S,
action A, and abstract state history HQ, as inputs and
returns a reward. The purpose of providing more input
to the auxiliary function is to enable reward guidance for
both low-level and abstract states. Our auxiliary function is
generated using the code generation model πC , with RP and
L as inputs, Raux ∼ πC(.|(RP,L)). We use the same RAG
framework and LLM model with a temperature of 0.7 to
allow for more creative reward shaping.

The auxiliary function purpose is to provide denser re-
wards for reaching intermediate states, while simultaneously
injecting the behavioral context into the driving policy. This
is particularly useful for complex behaviors characterized
by numerous transitions where the primary reward function
offers limited guidance. For instance, the behavior “merging
from a complete stop” requires the vehicle to navigate a
series of actions: enter the on-ramp, stop, move again, and
then merge. Using the auxiliary reward, we successfully
trained 18 driving behaviors (see Section III-G).

The rewards from our Raux are normalized to the range
[−1, 1]. Empirically, we find that as the driving policy learns
the behavior, the auxiliary function’s influence naturally
diminishes as the primary function’s larger rewards become
more dominant. This makes our method more robust to
different generations of the auxiliary function.

F. Auxiliary Function Iterator

A common challenge of reward shaping is that it can
generate unintended behaviors. To address this, we generate
a new iteration of the auxiliary function using a code
generation model, R′

aux ∼ πC(.|(Raux,Hq,L)); where R′
aux

is the new auxiliary function, and (Raux,Hq,L) are the
inputs to the LLM. The abstract state history Hq , as an
input to πC , provides an informative abstract summary
of the low-level trajectories. This summary provides the
LLM with high-level insights into a rollout, allowing it
to adjust the reward incentive structure accordingly. This
iterative process introduces new incentives for exploring
new states and penalties for unwanted behaviors, thereby
aligning the policy more closely with the desired behavior.
By incorporating high-level observations into the iterative
process, we proactively mitigate risks associated with unsafe

Behaviors
Emergence Rate

(%)
Collision Rate

(%)
Avg. Speed

(m/s)
1. Decelerate through intersection 56.67 40.00 7.42
2. Consistent speed crossing 63.33 20.00 5.73
3. Abrupt full stop at intersection 56.67 13.33 1.06
4. Erratic speed 93.33 26.67 5.60
5. Rolling stop at intersection 73.33 30.00 5.10
6. Rapid acceleration at intersection 76.67 43.33 21.24

Fig. 4: Diverse driving behaviors at an intersection.

reward-shaping practices [15]. For a visual illustration of this
process, see the left figure in Figure 3.

G. Learning a Driving Policy.

We employed a multi-agent implementation of the Ad-
vantage Actor-Critic algorithm (MAA2C) [20] to learn the
driving policies πP . In this setup, each agent independently
learns using a concurrent training strategy in a cooperative
environment under partial observation conditions.

IV. EXPERIMENTS

In this section, we demonstrate our method’s ability to
preserve the behavioral context across natural language,
code, and driving policy by showcasing strong alignment
between these domains. Following this, we propose a suite
of metrics to quantify the behavioral diversity in code and
driving policy. Through evaluation, we show that our method
can generate more diverse trajectories than other baselines.

A. Implementation Details

Simulator. We conducted training using the Highway
Environment simulator [16]. We simulate for 100 timesteps
and update the policy at a frequency of 5Hz. The action space
for each vehicle is discrete, comprising 5 possible actions for
lateral and longitudinal control with a speed range of [0, 40].
Our implementation uses the OpenAI Gym framework [3].

Training Details. Within the MARL framework, we
shared rewards for vehicles nearby and penalized for col-
lisions. All policies were trained using the same hyper-
parameters, network architecture, and environment setup.
Specifically, our actor and critic networks each comprise two
hidden linear layers, each with 256 neurons followed by a
ReLU activation function. We used the RMSprop optimizer
and applied a fixed learning rate of 5e−5 for both networks.

Iterating Details. We train a driving policy πP , for
10, 000 episodes and do a soft evaluation for every 2, 500



Behaviors Emergence Rate (%) Collision Rate (%) Avg. Speed (m/s)
Tailgating 40.00 56.67 19.62
Accelerating in Congestion 100.00 73.33 30.18
Side-by-Side Driving 63.33 33.33 14.28
Following at a Safe Distance 93.33 0.00 31.79
Lane Weaving 73.33 36.67 15.52
Erratic Speed 53.00 63.33 29.96

Behaviors Emergence Rate (%) Collision Rate (%) Avg. Speed (m/s)
Early Deceleration on Ramp 80.00 30.00 12.46
Sudden Braking After Merging 80.00 13.33 9.79
Late Merging at Ramp End 86.67 0.00 13.17
Accelerative Merging 60.00 33.33 12.43
Merging with Speed Variation 96.67 6.67 8.72
Merging from Complete Stop 60.00 26.67 9.05

Fig. 5: Diverse highway driving and merging behaviors.

(a) A diagonal line in the code and language agreement matrix
indicates that there is a high similarity between the language
description and code, and thus we show that the behavioral context
is preserved across these domains.

(b) A diagonal line in the code and driving policy agreement matrix
indicates that the policy trained by the reward function was most
optimal compared to the other evaluated policies, and therefore we
show that the behavioral context is preserved across these domains.

Fig. 6: Agreement matrix to show behavioral alignment.

episodes. This uses our iterative process to assess the align-
ment of πP to the behavior L without updating the auxiliary
function. We terminate the training if the iterator indicates
the behavior has been learned. After training for 10, 000
episodes, we run the iterative process again and update the
auxiliary function according to the iterator.

Evaluation Details. We evaluate the driving policies on
30 rollouts (varied seeding) using the policy with the highest
expected cumulative reward during training.

B. Policy Alignment

In this section, we demonstrate behavioral alignment
between the language, code, and driving policy domains
using agreement matrices, and validate text-to-driving policy
synthesis via manual human inspection.

Language and Code Agreement. To quantify the agree-
ment between the language and code domain, we compute
the pairwise cosine similarity between the sentence embed-
ding of L and the code embedding of Raux using CodeBERT
[12]. For a set of n language descriptions and auxiliary func-
tions, our agreement matrix is a n×n matrix. A diagonal line
in the agreement matrix indicates that the correct pairing of L
and Raux received the highest similarity among other possible
L and Raux pairs. Figure 6a presents the visualization of the
agreement matrix, where a diagonal line is mostly present.
Notably, the figure for the “highway” environment distinctly
shows a pronounced bright diagonal, surrounded by darker
regions, indicating a strong alignment. This may be from
the greater diversity in language descriptions of the highway
behaviors compared to those of other environments.

Code and Driving Policy Agreement. In addition, we
extend our analysis to also show strong agreement between
code and driving policy domain. To this end, we quantify
this agreement by evaluating the trained driving policy πP

and computing the expected cumulative reward according
to the auxiliary reward Raux. Specifically, given a set of
n auxiliary functions and n driving policies, we define the
element AC↔P

ij of the agreement matrix AC↔P ∈ Rn×n as:

AC↔P
ij = Eτ∼πP

j

[
T∑

t=1

Ri(St,At)

]
(1)

Then, we compare these values relative to the performance of
alternate driving policies on the same auxiliary reward. For-
mally, we consider a reward function Ri to be in agreement
with a policy πP

j if:

∀k ̸= j,AC↔P
ij > AC↔P

ik (2)

The intuition is to examine how each driving policy is eval-
uated by the auxiliary function. The presence of a diagonal
line in AC↔P , seen in Figure 6b suggests strong alignment
between the code and driving policy domain. As observed
again, the “highway” environment showcases a prominent
dark red diagonal that is surrounded by darker blue areas.
This implies that the policies are highly specialized and
are, therefore, behaviorally diverse. Our results indicate that



(a) Code diversity with K = 5 (b) Policy diversity

Fig. 7: Pairwise diversity comparison.

natural language descriptions may serve as a proxy for
estimating the diversity of driving behaviors.

Language and Policy Agreement. In our next analysis,
we verify that the driving policy πP corresponds to the
behaviors described by L. To evaluate the degree of align-
ment between the behavior description and the driving policy,
we enlist human annotators to measure the emergence rate
by manual inspection. The emergence rate measures how
frequently the described behavior appears by at least 1 agent
in 30 different rollouts. The relatively high emergence rates,
as collectively presented in Section III-G, strongly suggest
a consistent adherence to the described behavior rather than
stochastic occurrences. The visualizations in Section III-G
showcase this text to driving policy alignment.

C. Diversity Baselines

Code Diversity. To evaluate the diversity of the reward
functions, we utilize the Kendall rank correlation coefficient,
T, a common statistical metric for assessing the concordance
in trends of time series [9], to compare the rank-ordering
of rewards. We define the ranked rewards associated with
the reward function R as R. The ranking process involves
discretizing the reward signals into K distinct ranks with
K chosen as an odd positive integer to maintain symmetry.
Here, a rank of 1 is assigned to the highest positive reward,
a middle rank to zero reward, and a rank of K to the lowest
negative reward. Ranks 1 to K+1

2 categorize positive rewards,
while ranks K+1

2 to K categorize negative rewards, both
distributed into equal parts. We then mask away the central
rank when both reward functions exhibit neutral rewards,
focusing our analysis on the agreement and disagreement on
active reward states. Our diversity metric does not need to
assume continuity and is also scale invariant as it measures
similarity according to reward prioritization rather than the
absolute reward values. We report the median T results with
p-value = 0.05 at different K = {5, 7, 9} values in Table I.
We will denote this diversity measure as DC .

A high DC value, close to 1, indicates similar reward
rankings and low diversity. Conversely, a value near 0
suggests moderate diversity due to inconsistent reward corre-
lations. Negative DC values, particularly those approaching -
1, signify high diversity, as the reward function ranks rewards
inversely. In the merge map, a higher similarity is expected
due to a common reward that promotes merging. In contrast,
other environments displayed lower or negative DC values,
attributable to fewer simulation constraints.

Pairwise Kendall Tau ↓Environment Rank levels
(K) Human Expert Ours

K = 5 -0.0398 -0.1352
K = 7 -0.0645 -0.1189Intersection
K = 9 -0.0538 -0.1188
K = 5 0.2463 0.3675
K = 7 0.1985 0.2252Merge
K = 9 0.1970 0.3938
K = 5 0.0013 -0.2525
K = 7 0.0306 -0.2358Highway
K = 9 0.0351 -0.2206

TABLE I: Code diversity using Kendall Tau correlation

Jensen-Shannon Divergence (IQR) ↑Methods Intersection Merge Highway
Random Policy (6 skills) 0.1197 (0.0019) 0.2297 (0.0040) 0.2515 (0.0022)
Random Policy (30 skills) 0.1385 (0.0014) 0.2250 (0.0084) 0.3033 (0.0007)
Human Expert (5 skills) 0.1686 (0.0313) 0.2595 (0.0239) 0.3686 (0.0442)
DIAYN (6 skills) 0.0107 (0.0062) 0.0152 (0.0038) 0.0254 (0.0021)
DIAYN (18 skills) 0.0163 (0.0039) 0.0211 (0.0058) 0.0319 (0.0014)
DIAYN (36 skills) 0.0181 (0.0079) 0.0083 (0.0027) 0.0195 (0.0067)
Ours (6 skills) 0.1845 (0.1085) 0.3397 (0.0523) 0.3039 (0.0729)

TABLE II: Trajectory diversity using JSD

We benchmarked our results against the default reward
functions from the Highway Env simulator that was devel-
oped and refined by the community, which we regarded
as expert-crafted rewards [16]. We conducted the same
experiments on 5 different expert-craft reward functions per
environment and reported the median DC in Table I. For both
the “intersection” and “highway” environment, T2D consis-
tently yielded lower DC values than those of the expert-
crafted reward functions, indicating greater diversity in our
reward structures. This discrepancy was most notable in the
“highway” environment, where T2D exhibited significantly
more negative DC values, contrasting that with the positive
DC values from the expert reward functions. On the “merge”
environment, our results indicated less diversity compared
to the expert-crafted reward functions, possibly because the
expert reward functions did not promote merging behavior
as a common reward objective, whereas ours did. Lastly,
the histogram in Figure 7a shows that T2D resulted in a
greater spread of code diversity outcomes, particularly by
achieving a higher frequency of negative Kendall Tau corre-
lation values. Moreover, it recorded a lower mean pairwise
Kendall Tau score than that associated with expert rewards.
This highlights our method’s ability to generate varied reward
structures to promote diverse driving behaviors.

Driving Policy Diversity. In this section, we show that
T2D can also generate behaviorally diverse trajectories.
We use an existing metric introduced in [17] to measure
the trajectory diversity via the Jensen-Shannon Divergence
(JSD). We report the median JSD across all agents on 30
different seedings for each map in Table II.

To contextualize these findings, we benchmarked against
three different baselines: random behaviors, unsupervised
skill acquisition algorithms, and driving policies trained on
expert-crafted reward functions [16]. Random behaviors were
generated by defining πP as a uniform distribution, where
it equally picks an action from the available actions. Then,
30 random behaviors are generated for each map through
varied seeding. Next, we compared T2D to Diversity is



All You Need (DIAYN) [10], an established unsupervised
skill acquisition algorithm. We adapted the DIAYN method
into a multi-agent setting and trained for 3 different skill
counts per map (6, 18, and 36). Our third baseline is against
driving policies that were trained on expert-crafted reward
functions. We report the median DP in Table II. Our results,
as summarized in the table, indicate that T2D surpass random
policies and DIAYN-generated policies across all tested
scenarios. Notably, T2D exhibits the highest DP in “merge”
scenarios, suggesting a greater behavioral diversity compared
to other methods. Even in “intersection” and “highway” sce-
narios, our approach demonstrates competitive diversity, only
marginally trailing the human expert in “highway” scenarios.
The pairwise JSD values distribution shown in Figure 7b
suggests that driving policies derived from explicitly defined
reward functions tend to yield a more dispersed and wider
spread of policy diversity compared to those from intrinsic
reward policies and random behaviors.

V. CONCLUSION
In our work, we introduce Text-to-Drive (T2D) to generate

diverse driving behaviors from natural language descriptions.
T2D utilizes an LLM to synthesize behaviors in simulation,
constructing a state chart for mapping states to high-level
abstractions, thereby enhancing task summarization, policy
alignment assessment, and auxiliary reward shaping without
human supervision. With our knowledge-driven approach,
we demonstrate that T2D generates more diverse trajectories
compared to other baselines and offers a natural language
interface that allows for incorporating human preference.
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